VectorSphericalWaveFunctionΒΆ

Type:section
Appearance:multiple

Specifies an illuminating, time-harmonic vector spherical wave function,

\begin{eqnarray*}
\VField{\VField{E}} & = &  a\pvec{\{N,M\}}^{1}_{nm}(\pvec{r},k_+)
\end{eqnarray*}

To specify a vector spherical wave function illumination the following parameters are required:

  • the scaling Coefficient a ,
  • the angular frequency Omega or vacuum wavelength Lambda0,
  • the integer multipole degree n, order m and type (N or M) of the vector spherical wave function \pvec{N}_{nm},\pvec{M}_{nm},
SourceBag {
  Source {
    ElectricFieldStrength {
      VectorSphericalWaveFunction {
        Coefficient = 1
        Lambda0 = 50e-9
        MultipoleDegree = 1
        MultipoleOrder = -1
        Type = M
      }
    }
  }
}

Theoretical background

It is required that the exterior of the computational domain is a lossless, homogeneous and isotropic material distribution enclosing the origin of the vector spherical wave function. Let \varepsilon_+ and \mu_+ denote the corresponding scalar permittivity and permeability, respectively. The angular wave number is given by k_+=\omega \sqrt{\varepsilon_+ \mu_+}.

The vector spherical wave functions \pvec{M}_{nm},\pvec{N}_{nm} for the incoming fields have the following definition [1] in terms of spherical coordinates (r,\vartheta,\varphi)

\begin{eqnarray*}
\pvec{M}^{1}_{nm} = \gamma_{nm} j_{n}(kr)\nabla\times\left(\pvec{r} P_{n}^m(cos(\vartheta))e^{im\varphi}\right)
\end{eqnarray*}

\begin{eqnarray*}
\pvec{N}^{1}_{nm}  =  \frac{1}{k} \nabla \times \pvec{M}^{1}_{nm}  =  \gamma_{nm} \left[ \frac{n(n+1)}{kr}j_{n}(kr) \frac{\pvec{r}}{r} P_{n}^m(cos(\vartheta))e^{im\varphi} + \frac{r}{kr} \frac{d}{d(kr)}\left(kr j_n(kr)\right)  \nabla \left( P_{n}^m(cos(\vartheta))e^{im\varphi} \right) \right]
\end{eqnarray*}

with the common normalization factor

\begin{eqnarray*}
\gamma_{nm}  & = &  \sqrt{\frac{(2n+1)(n-m)!}{4\pi n (n+1)(n+m)!}}.
\end{eqnarray*}

The definition makes use of the spherical Bessel functions j_n(x) and the associated Legendre polynomials P_n^m(x) of degree n and order m

Bibliography

[1]Mishchenko, Michael I., Larry D. Travis, and Andrew A. Lacis. Scattering, absorption, and emission of light by small particles. Cambridge university press, 2002.